Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1129089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035678

RESUMO

Lipid metabolism is essential in maintaining energy homeostasis in multicellular organisms. In vertebrates, the peroxisome proliferator-activated receptors (PPARs, NR1C) regulate the expression of many genes involved in these processes. Atlantic cod (Gadus morhua) is an important fish species in the North Atlantic ecosystem and in human nutrition, with a highly fatty liver. Here we study the involvement of Atlantic cod Ppar a and b subtypes in systemic regulation of lipid metabolism using two model agonists after in vivo exposure. WY-14,643, a specific PPARA ligand in mammals, activated cod Ppara1 and Ppara2 in vitro. In vivo, WY-14,643 caused a shift in lipid transport both at transcriptional and translational level in cod. However, WY-14,643 induced fewer genes in the fatty acid beta-oxidation pathway compared to that observed in rodents. Although GW501516 serves as a specific PPARB/D ligand in mammals, this compound activated cod Ppara1 and Ppara2 as well as Pparb in vitro. In vivo, it further induced transcription of Ppar target genes and caused changes in lipid composition of liver and plasma. The integrative approach provide a foundation for understanding how Ppars are engaged in regulating lipid metabolism in Atlantic cod physiology. We have shown that WY-14,643 and GW501516 activate Atlantic cod Ppara and Pparb, affect genes in lipid metabolism pathways, and induce changes in the lipid composition in plasma and liver microsomal membranes. Particularly, the combined transcriptomic, proteomics and lipidomics analyses revealed that effects of WY-14,643 on lipid metabolism are similar to what is known in mammalian studies, suggesting conservation of Ppara functions in mediating lipid metabolic processes in fish. The alterations in the lipid profiles observed after Ppar agonist exposure suggest that other chemicals with similar Ppar receptor affinities may cause disturbances in the lipid regulation of fish. Model organism: Atlantic cod (Gadus morhua). LSID: urn:lsid:zoobank.org:act:389BE401-2718-4CF2-BBAE-2E13A97A5E7B. COL Identifier: 6K72F.

2.
Sci Rep ; 11(1): 10546, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006915

RESUMO

How an organism copes with chemicals is largely determined by the genes and proteins that collectively function to defend against, detoxify and eliminate chemical stressors. This integrative network includes receptors and transcription factors, biotransformation enzymes, transporters, antioxidants, and metal- and heat-responsive genes, and is collectively known as the chemical defensome. Teleost fish is the largest group of vertebrate species and can provide valuable insights into the evolution and functional diversity of defensome genes. We have previously shown that the xenosensing pregnane x receptor (pxr, nr1i2) is lost in many teleost species, including Atlantic cod (Gadus morhua) and three-spined stickleback (Gasterosteus aculeatus), but it is not known if compensatory mechanisms or signaling pathways have evolved in its absence. In this study, we compared the genes comprising the chemical defensome of five fish species that span the teleosteii evolutionary branch often used as model species in toxicological studies and environmental monitoring programs: zebrafish (Danio rerio), medaka (Oryzias latipes), Atlantic killifish (Fundulus heteroclitus), Atlantic cod, and three-spined stickleback. Genome mining revealed evolved differences in the number and composition of defensome genes that can have implication for how these species sense and respond to environmental pollutants, but we did not observe any candidates of compensatory mechanisms or pathways in cod and stickleback in the absence of pxr. The results indicate that knowledge regarding the diversity and function of the defensome will be important for toxicological testing and risk assessment studies.


Assuntos
Peixes/fisiologia , Modelos Biológicos , Animais , Biotransformação , Peixes/classificação , Genoma , Filogenia , Medição de Risco , Especificidade da Espécie , Xenobióticos/farmacocinética , Peixe-Zebra/genética
3.
Front Mol Biosci ; 7: 591406, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324679

RESUMO

The availability of genome sequences, annotations, and knowledge of the biochemistry underlying metabolic transformations has led to the generation of metabolic network reconstructions for a wide range of organisms in bacteria, archaea, and eukaryotes. When modeled using mathematical representations, a reconstruction can simulate underlying genotype-phenotype relationships. Accordingly, genome-scale metabolic models (GEMs) can be used to predict the response of organisms to genetic and environmental variations. A bottom-up reconstruction procedure typically starts by generating a draft model from existing annotation data on a target organism. For model species, this part of the process can be straightforward, due to the abundant organism-specific biochemical data. However, the process becomes complicated for non-model less-annotated species. In this paper, we present a draft liver reconstruction, ReCodLiver0.9, of Atlantic cod (Gadus morhua), a non-model teleost fish, as a practicable guide for cases with comparably few resources. Although the reconstruction is considered a draft version, we show that it already has utility in elucidating metabolic response mechanisms to environmental toxicants by mapping gene expression data of exposure experiments to the resulting model.

4.
Sci Rep ; 8(1): 10404, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29991818

RESUMO

Sensitivity to environmental stressors largely depend on the genetic complement of the organism. Recent sequencing and assembly of teleost fish genomes enable us to trace the evolution of defense genes in the largest and most diverse group of vertebrates. Through genomic searches and in-depth analysis of gene loci in 76 teleost genomes, we show here that the xenosensor pregnane X receptor (Pxr, Nr1i2) is absent in more than half of these species. Notably, out of the 27 genome assemblies that belong to the Gadiformes order, the pxr gene was only retained in the Merluccidae family (hakes) and Pelagic cod (Melanonus zugmayeri). As an important receptor for a wide range of drugs and environmental pollutants, vertebrate PXR regulate the transcription of a number of genes involved in the biotransformation of xenobiotics, including cytochrome P450 enzymes (CYP). In the absence of Pxr, we suggest that the aryl hydrocarbon receptor (Ahr) have evolved an extended regulatory role by governing the expression of certain Pxr target genes, such as cyp3a, in Atlantic cod (Gadus morhua). However, as several independent losses of pxr have occurred during teleost evolution, other lineages and species may have adapted alternative compensating mechanisms for controlling crucial cellular defense mechanisms.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular , Receptor de Pregnano X/genética , Receptores de Hidrocarboneto Arílico/genética , Animais , Gadiformes/genética , Genoma/genética , Filogenia , Xenobióticos/toxicidade
5.
Aquat Toxicol ; 201: 174-186, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29929084

RESUMO

Polycyclic aromatic hydrocarbons such as benzo[a]pyrene (BaP) that activate the aryl hydrocarbon receptor (Ahr) pathway, and endocrine disruptors acting through the estrogen receptor pathway are among environmental pollutants of major concern. In this work, we exposed Atlantic cod (Gadus morhua) precision-cut liver slices (PCLS) to BaP (10 nM and 1000 nM), ethynylestradiol (EE2) (10 nM and 1000 nM), and equimolar mixtures of BaP and EE2 (10 nM and 1000 nM) for 48 h, and performed RNA-Seq based transcriptome mapping followed by systematic bioinformatics analyses. Our gene expression analysis showed that several genes were differentially expressed in response to BaP and EE2 treatments in PCLS. Strong up-regulation of genes coding for the cytochrome P450 1a (Cyp1a) enzyme and the Ahr repressor (Ahrrb) was observed in BaP treated PCLS. EE2 treatment of liver slices strongly up-regulated genes coding for precursors of vitellogenin (Vtg) and eggshell zona pellucida (Zp) proteins. As expected, pathway enrichment and network analysis showed that the Ahr and estrogen receptor pathways are among the top affected by BaP and EE2 treatments, respectively. Interestingly, two genes coding for fibroblast growth factor 3 (Fgf3) and fibroblast growth factor 4 (Fgf4) were up-regulated by EE2 in this study. To our knowledge, the fgf3 and fgf4 genes have not previously been described in relation to estrogen signaling in fish liver, and these results suggest the modulation of the FGF signaling pathway by estrogens in fish. The signature expression profiles of top differentially expressed genes in response to the single compound (BaP or EE2) treatment were generally maintained in the expression responses to the equimolar binary mixtures. However, in the mixture-treated groups, BaP appeared to have anti-estrogenic effects as observed by lower number of differentially expressed putative EE2 responsive genes. Our in-depth quantitative analysis of changes in liver transcriptome in response to BaP and EE2, using PCLS tissue culture provides further mechanistic insights into effects of the compounds. Moreover, the analyses demonstrate the usefulness of PCLS in cod for omics experiments.


Assuntos
Benzo(a)pireno/toxicidade , Exposição Ambiental/análise , Etinilestradiol/toxicidade , Gadus morhua/genética , Fígado/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Animais , Análise por Conglomerados , Feminino , Gadus morhua/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Anotação de Sequência Molecular , RNA/metabolismo , Sobrevivência de Tecidos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
6.
Aquat Toxicol ; 177: 395-404, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27388235

RESUMO

The low concentrations of most contaminants in the aquatic environment individually may not affect the normal function of the organisms on their own. However, when combined, complex mixtures may provoke unexpected effects even at low amounts. Selected aquatic micropollutants such as chlorpyrifos, bis-(2-ethylhexyl)-phthalate (DEHP), perfluorooctanoic acid (PFOA) and 17α-ethinylestradiol (EE2) were tested singly and in mixtures at nM to µM concentrations using precision-cut liver slices (PCLS) of Atlantic cod (Gadus morhua). Fish liver is a target organ for contaminants due to its crucial role in detoxification processes. In order to understand the effects on distinct key liver metabolic pathways, transcription levels of various genes were measured, including cyp1a1 and cyp3a, involved in the metabolism of organic compounds, including toxic ones, and the catabolism of bile acids and steroid hormones; cyp7a1, fabp and hmg-CoA, involved in lipid and cholesterol homeostasis; cyp24a1, involved in vitamin D metabolism; and vtg, a key gene in xenoestrogenic response. Only EE2 had significant effects on gene expression in cod liver slices when exposed singly at the concentrations tested. However, when exposed in combinations, effects not detected in single exposure conditions arose, suggesting complex interactions between studied pollutants that could not be predicted from the results of individual exposure scenarios. Thus, the present work highlights the importance of assessing mixtures when describing the toxic effects of micropollutants to fish liver metabolism.


Assuntos
Caprilatos/toxicidade , Clorpirifos/toxicidade , Dietilexilftalato/toxicidade , Etinilestradiol/toxicidade , Fluorocarbonos/toxicidade , Gadus morhua/metabolismo , Fígado/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Caprilatos/metabolismo , Clorpirifos/metabolismo , Dietilexilftalato/metabolismo , Etinilestradiol/metabolismo , Fluorocarbonos/metabolismo , Inativação Metabólica , Fígado/metabolismo , Masculino , Testes de Toxicidade , Poluentes Químicos da Água/metabolismo
7.
BMC Genomics ; 15: 481, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24939016

RESUMO

BACKGROUND: Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) with harmful effects in animals and humans. Although PCB 153 is one of the most abundant among PCBs detected in animal tissues, its mechanism of toxicity is not well understood. Only few studies have been conducted to explore genes and pathways affected by PCB 153 by using high throughput transcriptomics approaches. To obtain better insights into toxicity mechanisms, we treated juvenile Atlantic cod (Gadus morhua) with PCB 153 (0.5, 2 and 8 mg/kg body weight) for 2 weeks and performed gene expression analysis in the liver using oligonucleotide arrays. RESULTS: Whole-genome gene expression analysis detected about 160 differentially regulated genes. Functional enrichment, interactome, network and gene set enrichment analysis of the differentially regulated genes suggested that pathways associated with cell cycle, lipid metabolism, immune response, apoptosis and stress response were among the top significantly enriched. Particularly, genes coding for proteins in DNA replication/cell cycle pathways and enzymes of lipid biosynthesis were up-regulated suggesting increased cell proliferation and lipogenesis, respectively. CONCLUSIONS: PCB 153 appears to activate cell proliferation and lipogenic genes in cod liver. Transcriptional up-regulation of marker genes for lipid biosynthesis resembles lipogenic effects previously reported for persistent organic pollutants (POPs) and other environmental chemicals. Our results provide new insights into mechanisms of PCB 153 induced toxicity.


Assuntos
Ciclo Celular/efeitos dos fármacos , Gadus morhua/genética , Gadus morhua/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Bifenilos Policlorados/farmacologia , Transcriptoma , Animais , Análise por Conglomerados , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Anotação de Sequência Molecular , Transdução de Sinais
8.
Aquat Toxicol ; 147: 7-17, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24355757

RESUMO

The zebrafish (Danio rerio) is a widely used model species in biomedical research. The ZFL cell line, established from zebrafish liver, and freshly isolated primary hepatocytes from zebrafish have been used in several toxicological studies. However, no previous report has compared and characterized these two systems at the level of gene expression. The aim of this study was to evaluate the ZFL cell line in comparison to primary hepatocytes as in vitro models for studying effects of environmental contaminants in zebrafish liver. Using quantitative real-time PCR, the basal level and transcriptional induction potential of key genes involved in toxic responses in the ZFL cell line, primary hepatocytes and whole liver from zebrafish were compared. The study showed that the ZFL cells have lower levels of mRNA of most selected genes compared to zebrafish liver. The induced gene transcription following exposure to ligand was much lower in ZFL cells compared to zebrafish primary hepatocytes at the doses tested. Importantly, oestrogen receptor and vitellogenin genes showed low basal transcription and no induction response in the ZFL cell line. In conclusion, it appears that primary hepatocytes are well suited for studying environmental contaminants including xenoestrogens, but may show large sex-dependent differences in gene transcription. The ZFL cell line shows potential in toxicological studies involving the aryl hydrocarbon receptor pathway. However, low potential for transcriptional induction of genes in general should be expected, especially notable when studying estrogenic responses.


Assuntos
Regulação da Expressão Gênica/fisiologia , Hepatócitos/fisiologia , Toxicologia/métodos , Peixe-Zebra/fisiologia , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/genética , Fatores Sexuais , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...